壹牛家长圈-

查看: 788|回复: 3
打印 上一主题 下一主题

中国中学生的数学为什么好,中国大学教授的数学研究又为什么不好?

[复制链接]
跳转到指定楼层
楼主
发表于 2015-7-21 09:35:49 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

相聚壹牛,和更多牛爸牛妈们一起交流!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 小小熊 于 2015-7-21 11:53 编辑

中国人的数学好,似乎是全世界公认的事实,但中国的数学研究却相当落后,为什么会这样?
文/胡修卓

世界人民已经懒得吐槽美国学生的数学水平了,正如他们已习惯于惊叹中国学生的天才。

脱离计算器就不会四则运算,把sinx/n算成“six”,美国学生闹的笑话层出不穷,每隔一段时间,舆论就兴起“救救孩子”的呼吁。相比之下,中国学生的能力之强,令大多数美国中学生咋舌。
网络中广为流传的美国学生在数学试卷上闹出的笑话

中国人的数学为什么好
在经合组织发起的国际学生评估项目(PISA)中,上海的中学生在数学水平测试中超过其他75个城市,排名第一。英国人不胜羡慕,立刻邀请了60名上海中学数学老师赴英介绍经验。
来源:OECD2012年国际学生评估项目(PISA)

另外,其制定的各国家和地区15岁学生数学成绩排名,大陆尚未作为整体参加测试,但中国上海的成绩高居第一,美国只排在36位。

除了日常的教学,竞赛的成绩也体现了这一差距。

国际数学奥林匹克竞赛是面向中学生的最著名竞赛之一,自1985年中国参赛以来,19次获总分第一。中国以外,只有韩国、罗马尼亚、保加利亚和苏联(俄罗斯)、伊朗和美国获得过总分第一,其中,美国仅仅获得过一次。

好事的美国媒体当然会反思。9月份时,《华尔街日报》援引波士顿东北大学和德克萨斯农工大学两位教授的研究成果,将落后的原因归纳为语言问题。

也就是说,中国、日本、韩国、土耳其等国语言带有天然的数学优势,比如汉语,10个基础汉字就能呈现所有数字,而英语却要20个不同的单词,影响了头脑运算效率。
不同语言中,中文、日语、土耳其语都可以运用凑十法表现数字,英语则不能。来源:wsj

运算过程中,“凑十法”(make a ten)的应用与否也影响颇深。就是说,若能将数字首先凑十计算,似乎就更加清晰快速。如“9+5”,用“凑十法”可分解为“9+1”,然后“10+4”,而英语母语者却不能顺畅的将之分解。同样,“11+17”能被中文等换为“10+1+10+7”,“eleven+seventeen”就无法如此。

一些学者也反复思考这一问题,最经典的应当是有怪才之称的马尔科姆•格拉德威尔(Malcolm Gladwell),他在《异类:不一样的成功启示录》一书中以《稻田与数学》为题专门分析研究了中国人的数学为什么特别好这个现象。

格拉德威尔的解释看上去非常有说服力。除了前面提到的10个基础汉字就能呈现所有数字外,他还认为,汉语的单音节使得中国人在处理数字时,心算速度天然会更快;中国人在语言上的另外一个优势是,汉语中表达分数的方式,天然就比其他语言更简洁直观。

但格拉德威尔认为,中国人的数学好,还不仅仅是前述种种语言优势,中国以水稻为主的农业耕作文化具有同样的决定性。因为格拉德威尔注意到,以水稻种植为主的日本、韩国人数学能力同样突出——适宜水稻栽种的地区,农夫一年四季都要忙碌,为了充分利用土地和时间,他们会远比小麦耕作农夫更精打细算。另外,中国古代一直是分散的小农户,经济的独立性,使每个农夫都必须像企业家一样学会计算。漫长历史中的竞争选择,会使得以水稻耕作为主的社会数学能力更为突出。

不过,格拉德威尔的分析虽然头头是道,但无论是他对现象的观察,还是对现象的解释,都有非常严重的错漏。这甚至可能使他的研究变得毫无价值。
马尔科姆•格拉德威尔与他的作品《异类:不一样的成功启示录》

中国人的数学好么?
第一个问题是,数学好的标准是什么?

如果我们说某个人群的数学好,指的是数学研究水平,那么问题来了。数学一旦延伸到大学或研究领域,笨笨的美国人立刻站起来了,而中国人的数学优势也神奇地缩小。

世界数学研究中,美国、法国和俄罗斯处于无可争议的领先地位。随后的以色列和日本等国也领先中国。即使是在中学数学向中国取经的英国,数学研究同样大幅领先。如果将话题的讨论范围扩展到研究和应用领域,反而会出现一个新问题,为什么中国人的数学研究不好。

以国际数学奥林匹克竞赛为例,除中国外,1985年以后的许多金牌获奖者们已在国际数学界崭露头角。法国、俄罗斯、美国、匈牙利和巴西等国的竞赛选手们都有获得菲尔兹奖、克雷数学奖等,而中国的参赛者却在研究水平上整体落后于曾经击败过的对手。

美国的数学研究尤其强大,不仅在纯数学领域,物理、化学以及需要大量数学知识的金融学、需要离散数学的基础计算机科学方面也处于领先。美国在这些倚赖数学的领域聚集了大量的人才,其自然科学家和工程师们的整体数学水平也绝不弱于其中国同行。
曾以满分摘得国际数学奥赛金牌的“数学天才”柳智宇(左)现已在龙泉寺出家,法号圣宇

为什么中国在中学数学竞赛中表现得如此出色,但在向后的发展中却后劲不足?

另外一个问题是,如果数学好的标准是中学生数学竞赛水平高,格拉德威尔等人显然忘掉了一段历史,1990年代以前,国际数学奥林匹克竞赛的金牌大户是苏联和东欧国家——国际奥林匹克竞赛原本就是由东欧国家发起,苏联和俄罗斯共获得过16次国际数学奥林匹克竞赛的团体总分第一。

中国在数学竞赛上开始取代苏联和东欧国家,是在苏东剧变之后——就像苏联人不再集中国家一切资源和力量来夺取奥林匹克运动会的金牌后,中国人在奥运会上的金牌开始赶超苏联东欧一样。

苏联人在数学上既没有种种先天的语言优势,也从来没有水稻栽培的历史,更要命的是,俄国和东欧的农夫在西方人看来差不多是世界上最散漫粗放的农夫,他们是离精打细算、勤劳等品质最远的人群。

无论是过去的苏联、东欧,还是今天的中国、日本、韩国等东亚国家,这些初高中数学计算能力较强,并且数学竞赛水平高的地区,唯一的共性就是它们有着强大的国家应试教育体制。

实际上,数学竞赛和数学研究有本质区别,初高中的计算能力也与大学数学也并不相同。

同时获过国际数学奥林匹克竞赛金牌和菲尔兹奖的澳大利亚数学家陶哲轩曾在一篇文章中表示:数学竞赛和数学学习非常不同。尤其研究生生涯,学生们不会遇到像数学竞赛题那样描述清晰,步骤固定的题目,尽管竞赛思维在解决研究型问题的某些步骤速度很快,但这无法扩展到更广泛的数学领域,更多问题仍赖于耐心和持久的工作——阅读文献,使用技巧,给问题建模,寻找反例等。
1988年,13岁的陶哲轩从时任澳大利亚总理鲍勃·霍克手中接受国际数学奥利匹克金牌

此外,奥林匹克竞赛中的题目虽然难度更大,但考验的是技巧,创造性上要求却更低,但后者是研究领域的核心能力之一。

总得来说,数学竞赛所需的是熟练和技巧,依赖天赋,但依靠大量的集中培训亦可取得成就。而高等数学的研究和学习则靠持久的工作和深入的理解,与技巧性的算术(arithmetics)不同,数学研究讲求抽象化和逻辑推理的使用,对复杂多样的数学问题有深刻理解力远重要于特定类型问题的求解。

著名数学家威廉•瑟斯顿(William Thurston)曾把数学竞赛比作“单词拼写比赛”。他认为,单词拼写比赛获得名次并不代表成为优秀作家,数学竞赛也一样:好成绩不意味着真正理解数学。

数学学习考验的是学习和思考的深度和质量,而数学竞赛需要的是“早熟程度”,要和时间赛跑,要比同龄人学得快。对一个聪明的学生来说,后者更加容易。并且,即使天赋有限,凭借高强度的训练也能在后者取得进步。

显然,东亚的考试型教育能提供最为丰富的训练。行为经济学家尤里•格尼兹(Uri Gneezy)和阿尔多•拉切齐尼(Aldo Rustichini)的实验发现,即使在参赛者水平相仿的情况下,给出单题奖励更高的竞赛能让参赛者获得最好的成绩,这恰恰是中国、东欧等国的强项:更高的竞争压力,更多的竞赛奖励,整个中学教育都以算术能力为培训要点。

这在美国或其他西欧国家所不强求的,对于普通学生,只要达到基本数学成绩即可,如美国马塞诸塞州,统考难度大约是会基本的三角函数运算。

可以说,教育中训练强度的差别造成了普通中学生的数学水平差距。集中培训的强度,也很大程度上影响了竞赛成绩。

那么,进入大学之后,中美数学成绩的差异开始逆转,又是为什么呢?

中国的数学研究为什么不好
或许关键原因是美式的分类教育。美国对普通中学生数学计算能力的基本要求不高,有天赋、感兴趣的学生,则可以在中学里完成大学先修课程(Advanced Placement)。修完AP之后,会参加先修课程考试。
美国中学生的AP教材不仅限于数学,还涵盖多个学科领域

先修课程难度远高于美国普通高中数学,相对于数学竞赛,它的设置更有利于形成对数学问题的理解。比如美国和加拿大的大学先修课程中,微积分部分的两门课程覆盖了一元微积分的所有知识,相当于美国大学两个学期数学课程的内容,通过这些训练能更合理的增进对微积分的理解。而讲求竞赛的中国高中则很少注重这类知识。

从个人未来成长的角度看,提前完成大学先修课程比把时间花在数学竞赛上更合适,前者更接近真正意义上数学研究,基于同样的理由,大学在录取学生的时候也会把先修课程的成绩作为一项重要的考量。

至于研究领域,高强度数学计算训练的效用非常低。现代数学和很多基础学科一样,延续的研究传统和学派氛围,往往决定了其成就的高低。在这一点上,中国大学与欧美大学存在巨大落差。

而苏联和东欧国家竞赛成绩也曾非常出色,但同时又是数学研究最顶尖的国家——过去近100年中,苏联-俄罗斯一直都是数学研究最顶尖的国家,是公认的和美国及法国齐名的数学研究大国。它与中国的强烈反差,恰好也是这个原因。

苏联(俄罗斯)优秀而悠久的数学研究传统几乎从未中断过。早在18世纪,近代数学先驱莱昂哈德•欧拉在彼得堡工作了30多年,带动了俄国著名的彼得堡数学学派。此后,俄国和苏联又涌现出了罗巴切夫斯基、切比雪夫、李亚普诺夫和马尔科夫等数学家。

政治最动荡的斯大林和赫鲁晓夫年代,苏联的数学研究传统也没有中断,相反,因为战争和计划经济的需要,数学家们逃过了政治运动冲击。不但生活上有相当保障,且能有做感兴趣研究的相对自由。
1950年代末期,摄影家埃里希·莱辛生镜头下的苏联中学生在上数学课

同时,他们还有着特色的讨论班体系——由知名数学家主持,不限年龄和资历,感兴趣者均可参与。这非常有助于传统的延续。苏联的讨论班中涌现了一大批年轻数学家,形成了著名的莫斯科学派。

在培养更年轻的数学人才方面,苏联也与中国不同。苏联和中国同样有大量的数学夏令营,但苏联夏令营依靠兴趣报名,不强调考试和分数。讲课的是往往是某领域的大师,而不是专注于训练学生考试的中学老师。比如柯尔莫哥洛夫等最顶尖的数学家,每年都会参加中学数学夏令营。这不但可让学生对数学产生兴趣,且能让有天赋的学生有机会与大师对话,尽早了解真正意义上的数学。

此外,苏联数学界一直和国际数学界保持联系。当时极为繁荣的法国布尔巴基数学学派在苏联很受欢迎。苏联数学界翻译国际数学著作的速度也是一绝。

相比之下,同时代的中国数学家则凄惨的多。即使能逃过死亡,也只能按领导的安排作研究。例如,著名的解析数论学家华罗庚归国不到两年不堪其辱,但自杀未遂。此后不得不研究和推广指导“蒸馒头”的优选法。而华罗庚的老师,清华大学数学系的创始人熊庆来则直接被迫害致死。
1974年冬,华罗庚在广西深入车间讲解优选法

而中国的学生也难说幸运。他们过早的接受了高强度训练,虽得到竞赛金牌,但前方并没有开放的高等教育氛围和连续的数学传统,让他们当中有真正天赋的人在研究领域绽放光彩。当然,好的竞赛成绩,可让他们进入一流大学,可让学校领导评上先进,甚至对国家也不坏——将来这些学生留学美国,会让美国人感慨,中国人的数学计算能力真强啊。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 支持支持 反对反对
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复

使用道具 举报

成外龙爸 该用户已被删除
沙发
发表于 2015-7-21 11:10:46 | 只看该作者
可惜,好多图片看不到!
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

板凳
 楼主| 发表于 2015-7-21 11:46:47 | 只看该作者
所谓“中国学生数学NB”的神话

来自: 酥仁月饼

都说中国学生数理基础NB,呵呵

中国只是中学数理比较好,到了大学就甭提了。

中外工科高等教育有巨大差异,尤其体现在数理基础课上。

国内而言,首先是数学工具对中学思维的极端迁就
中国工科教材除了基本的微积分运算之外,像中学生一样喜欢用标量式,喜欢只考虑大小,忽略方向,甚至还出现过 “略去负号不写,只考虑大小”这样的语句,尽量避免使用矢量式。
而欧美的力学课程中一开始就使用大量的矩阵理论和线性空间知识,强迫学生以比较抽象的思维从比较高的视点看问题,摒弃中学思维中的部分陋习。

到这里之后才发现,很多中国留学生奇怪为什么老外出题不懂的循序渐进,一上来就是如此复杂的问题。虽然他们中很多人是清华、西工大或者上交前几名的尖子。
这就是中外工科教育的另一差异
我们培养的是解决简单问题的熟练度。优秀学生也只是解决简单问题的熟练度比较高而已。我们在一些常见的简单问题上有很多结论,要求学生背下来,对这些结论的熟练与否决定了学生考试成绩的高低。
老外很奇怪中国学生怎么背了这么多结论,而且都是他们没有刻意强调的。最重要的是,中国学生觉得这些结论很有价值,很高深。而老外觉得...
进行一下张量运算,这根本就是显然的嘛,高深个屁。

总而言之,我们长期以来“背结论”式的教育,扼杀了学生的推理能力,使得学生过分依赖结论。

举个简单的例子,理论力学课程中我们非常强调动量守恒和角动量守恒,套这两个公式一下子就能解决很多中式题目。
但如果一个模型,他既不是动量守恒,也不是角动量守恒,中国学生中的尖子也会很烦。因为这是不按套路出牌的。
老外才不管这些,算了满满一页纸,告诉你:我不懂什么狗屁动量守恒或者角动量守恒,因为它的动量和角动量的一个线性组合是守恒的。


还有
助教谈到几个经常被中国学生问到的蠢问题
“角速度怎么能算矢量呢?它不是转圈的嘛,向量应该是直的”
“面积什么时候都成矢量了?中学的时候可是一直把他当标量的”
“一致连续和连续到底有什么区别啊,一致收敛和收敛呢?”
难以摆脱中学逻辑的阴影,思维高等不起来,是中国学生普遍存在,亟待解决的缺陷

学了实变函数之后,中国学生仍然天真的认为求导和积分互为逆运算,仍然信奉“先积后导全抵消”。
在国内学了一年线性代数(这还算好的,有的只学了半年),竟然不知道对称阵可以正交对角化(这种学生在国内的线性代数考试中可能拿了90多分,国内只考个算行列式,特征值特征向量什么的,当然水)。当课上涉及这些内容时,面露惊讶神色,张大嘴做见上帝状的,只有中国学生。

再举一个揭中国学生伤疤的,

中国学生对 “场”非常没概念,对“梯度,旋度,散度”的了解只停留在定义式上,应用尤其不熟练。中国学生虽然中学的代数运算技巧、三角变换技巧非常高深,让老外瞠目结舌,但上了大学之后对那些蕴含着大智慧的高等工具却有强烈排斥倾向。除了基本的微积分运算之外,中国学生的数理思维能力还停留在中学巅峰时期的水平,甚至还差些。

中国学生认为柯西不等式是不显然的,是一种技巧,是少数人的专利,有畏惧心里,更遑论 holder和minkovski不等式。工科学生99%不知道柯西不等式,剩下的1%中又有99%不会用。而国外教学大纲是按照高屋建瓴的线性空间思维建立的,无论柯西,holder还是minkovski不等式,根本就是“三角形两边之和大于第三边”那样显然直观。

OK,不举具体例子了,太多了。一说凸函数,随便交换极限次序之类的笑话,80%都是中国学生整出来的。以后谈谈体制问题。

又忍不住了,再举一个例子:

上面说的那些东西,不是我首先发现的,以前也有不少人抱怨过,包括国内某些教授。他们的回应就是加强数学基础课的教学,把工科的“高等数学”改成“工科数学分析”。数学分析好啊,有大智慧的,但这时咱们的“山寨文化” 又起作用了:谁让你名字前面挂了“工科”二字,于是数学分析比高等数学优越的内容一删再删,最后变成了和高数没什么区别的东东,除了名字挂着个数分。

我们批量生产的人才,自称学过数分,连柯西收敛准则都不知道,分不清逐点收敛和一致收敛,自称学过傅里叶分析却只会套公式而不知道三角函数系的正交性,把助教都快整疯了。她眼中的中国留学生从来就不以数学水平著称,法国人和匈牙利人才是。

所以我们必须反思:为什么中国的中学生比老外的中学生数学物理都强,而且不止一星半点,到了大学却不仅被迎头赶上,还被远远超越?是什么造成了我们对高等思维、高等工具的排斥感?

我们的中学教育到底靠什么领先:

我们通过题海战术,让学生反复练习初等数学中一些较为非主流的,近代数学毫不感兴趣的技能(比如初中几何的辅助线,三角形全等,高中的三角函数代数变换,降幂扩角,倍半角公式,怎么样又勾起大家的痛苦回忆了吧)。而国外会强调一些空间知识,比如把长度的概念拓展成“模”,初步引入其他空间的三角不等式之类,略显抽象,但在我们看来毫无用处,因为这些东西不能帮我们算出椭圆或者抛物线的方程,而高考就靠这些。多记忆一些结论之后,乍一看起来我们的中学生比老外要多一些“形式运算”的数学技能。但这些技能在高考后会被迅速忘却,这方面的优势没了,抽象思维能力的劣势还在,“形式运算”的习惯还在,于是“随便交换极限次序”之类的笑话便不足为奇了。

同时,中国中学的教育只展示了数学最丑陋的一面,而不是优美的一面。无尽的题海使学生厌倦或者恐惧。进入大学之后由于没有了高三那样的压力,学生逃避或抵触高等思维、高等工具已成必然。而反观国外,已有概念在新的空间的推广,前后的相似之处,联系和区别,更能体现数学的本质,告诉学生数学是优美的。

中学数学技巧无论如何高深,终究也只能解决简单问题。
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

地板
 楼主| 发表于 2015-7-21 23:38:09 | 只看该作者
中国高考数学更应该改革
    石毓智

    特别说明:此文被《头条博客》推荐后得到了许多反馈,其中有人认为本文作者是因为数学不好而写此文报复社会,所以有必要给大家交待一下作者的数学背景。作者自十几岁读大学起,约三分之一的时间是投资在数学上的。在华中科技大学读研究生期间,跟数学系的研究生一起学过两门课,都是闭卷考试,代数拓扑学 78分(以拓扑学为研究方向的数学系那位研究生是67分),模糊数学 81分。在斯坦福大学又旁听了数论、群论、现代代数、代数几何、波利亚数学解题等课。先后自学了数理逻辑、高等数学、布尔代数、集合学、概率论、数学史、线性代数、图论、非欧几何等学科。我还听过3位“菲尔兹奖”获得者的7场讲座,他们是Edwin Witten,丘成桐和陶哲轩。过去20多年来一直从事自然语言中的数学问题研究,已有多种论著发表。

    ——中国学生的数学能力真的很好吗?

    ——长期以来,从大众到专家误解了“什么是数学”,错把“术数”当成数学,因而认为中国数学教育水平高。老师让学生把精力都花在“术数技巧”提高上,而忽略了“数学能力”的培养。

    ——一个残酷的现实是,从大众到学者再到数学家,中国人的数学能力在世界上是偏低的,不论历史还是现实都是如此,这是制约中国人的发现能力和创造能力的主要因素。

    昨天《央视新闻》报道关于教育部的一则消息,说一位白发的英国学者赞叹中国高中生数学考题之难,说英国的大学一年级学生才学勾股定理,而中国学生高中生就开始做复杂得多的数学题。还有一个广泛流行的观点,认为中国的中小学数学教育是成功的,中国学生的数学能力优于西方国家同龄的学生。其实,这种良好的感觉来自于对“什么是数学”的错误理解。

    在数学教育上,国人一直搞不清楚“什么是术数”和“什么是数学”的区别。那么,就让我用具体的例子来说明这个问题。

    中国人发明了围棋,非常了不起。中国的围棋水准是亚洲三霸之一,远远高于美国。美国不仅没有聂卫平、马晓春这种超一流的棋手,连三、四段以上的棋手都很难找到。然而,聂卫平、马晓春只能说是精于“围棋旳术数”,没人说他们是数学家。令我吃惊的是,我2010年在斯坦福大学访学期间,看到数学系的一位美国教授开了一门《围棋的数学原理》,这位教授可能下围棋不如我,连“一段”都没有,我围棋“业余一段”,然而他是数学家。这是值得我们深思的一个现象,围棋发明于中国,中国的围棋水平远高于美国,然而研究围棋的数学问题则是个洋人。

    大家都知道“中国结”,很精美很喜庆,国家大的庆典和春晚都少不了它。同时中国人很多都会织毛衣,图案别致,款式新颖,水平不说比欧美人高多少,起码一点不逊于他们。然而,我在斯坦福大学访学期间,看到他们数学系开设了一门《打结的数学原理》课程。这再一次引起了我的深思,为什么国人只能停留在“打结的术数”水平上,而概括不出其中的数学原理?

    在世界上,中国人赌博的历史最悠久,人数最多,也最疯狂。然而从赌博中产生的两门学科——概率论和统计学,却与中国人无缘,也是欧美人的首创。

    我在斯坦福听过5门数学课,参加过多场数学讲座,其中有成百上千个以个人名字命名的数学公式和定理,然而不见华人名字的踪影。

    数学界没有诺贝尔奖,它的最高奖是“菲尔兹奖”,授予40岁以下最优秀的数学家,每年平均只有一个人获奖。世界前5名的国家分别是:美国(11人)、法国(10人)、俄罗斯(9人)、英国(6人)、日本(3人)。中国大陆、香港、台湾的学校、研究所则无一人。迄今为止,华裔有两个,他们是丘成桐和陶轩哲(出生于澳洲),然而都是在被认为“中小学数学教育不好”的美国大学培养出来的。

    数学有100余个分支,诸如算数、三角、代数、几何、微积分、数论、拓扑学等,然而不论从历史还是现在的角度看,没有一个是华人首创的。

    中国人虽然在数学上没有什么建树,然而中国人中很多都做过“数学噩梦”。我前两天写了一篇博文,题目为《考试,中国人的No 1噩梦》。根据网友反馈,很多人都有做考试噩梦的经历,而且考试噩梦中关于数学的噩梦居多。怕数学的人,应该是中国受教者的通病。为什么国人被数学折磨?就是因为我们的数学教育走偏了,数学考试走邪了。

    因为教育者对数学的不正确理解,把全部经历都集中在训练学生的“术数”——演题上,变着花样折磨学生,而忽略了对学生数学理念的提高和数学思维的训练,结果既没有提高国人的数学能力,也出不了数学世界大师,对数学发展的贡献乏善可陈。

    跟英语高考改革不一样,高考数学的改革不是降低数学权重,而是考什么怎么考的问题。数学本来是一种科学思维的工具,现在数学则成了受教育者的噩梦,它成了“投资巨大收效甚微”的学科,这是所有教育者不得不深思的问题
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

让社区更精彩

  • 办公地址:成都青羊区通惠门路3号锦都1期18楼3号(浦发银行楼上)【地铁2号线通惠门站D出口、地铁4号线宽窄巷子站B出口】
  • 工作时间:周一到周六 10:00-17:00
028-86691808

关注我们

反馈建议:985052335@qq.com
Copyright   ©2016-2022  壹牛家长圈www.16jzq.com  Powered by©Discuz!
  ( 蜀ICP备16021970号-1 )|网站地图 
快速回复 返回顶部 返回列表