相聚壹牛,和更多牛爸牛妈们一起交流!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 成外龙爸 于 2015-9-5 10:06 编辑
数学学渣是如何高考考到135分的?
我的数学道路是十分艰难的,高一的时候,老师很好很温柔,我能听进课,成绩也就很不错,平时小测100大概可以80上下(我们是省重点高中重点班,老师出的题目很难)。
但高二一换老师,我就没听过课,成绩直线下降,从高二到高三第三次月考,150基本没上过三位数。尤其是到了高三,题目难度加大,更是搞得我经常大题只会前2题。
而数学要提高,我觉得最关键的不是做得多,而是要学会挑题目做!完了总结经验非常重要!我周围很多女生,效率很高,做很多题。厚厚的专题训练册,一题不会,看答案,抄答案,然后做下一题。我可以告诉你们,这样做绝对是事倍功半!
那么如何提高和练习呢?
提升数学的第一步,其实任何科目都是这样,就是将这一科细化,找出自己的薄弱点。
我们要知道,高中数学教科书那么多,加上习题册就更是恐怖,可高考数学卷只有21题,怎么可能面面俱到?!我们在剩下的时间所要练的,就是在高考必考点中,找出自己不过关的,各个击破!
我们把高考卷子分解开来看,选择题,填空题,解答题,就这三种类型。
选择题题目不太好确定类型,每一套试卷选择题都会有不同的考点,填空题亦如此,不够典型。再次我先讲解答题,也就是大题。
以全国卷为例,很固定的五大类型六大题,三角函数或数列,概率统计,立体几何,解析几何,函数导数结合压轴题,还有一道选修题。
我们先来分析考点
把大题部分分解成这几大类就好办了,一般来说,概率统计,三角函数,立体几何这三题难度是比较低的,如果你要120分,这三题必须保证全部拿到分。
如果你在这三个当中有弱点的话,就要进行专项训练。
那么如何进行专项训练呢?我刚才说过了,绝对不是捧着厚厚的专题训练册,一题不会,看答案,抄答案,然后做下一题。我们要挑题做,挑的就是高考会考的题型!
我在高三下学期,所有的专题训练册都扔到一边了。我买的是最近几年的高考题(这个是为了感受题型变化的惯性),以及各个地方的模拟题和考试题,这两种做完了,也可以做所谓的专家预测题。
当然,套题买回来了,绝对要一套套的做,定时做整的套题,之所以要买套题,是因为里面都是高考的题型,而这种题目才是我们需要做的。
但各个击破还是我们正在做的事情,比如我发现自己立体几何不过关。那么我就要把所有套题里立体几何的大题找出来,专门用几天把它做完。做的时候,注意相同类型和解法的题目不要重复做。
举个例子,之前我那种异形棱柱题很差,就是那些全部由平行四边形组成的,很难建坐标系的那些棱柱。
所以我在立体几何专项训练的时候,正方体的,正棱锥那些容易建坐标系的题目我统统不做。只做自己薄弱的。
立体几何我只做了三天,保证大概会考的类型我都做过并且掌握方法,以后都没有难倒我的立体几何题。
这就是最有效果的专项训练法。用高考的题型来做专项训练
而解答题的训练,就需要多下功夫了!
在这之前我必须先给你们灌输一个观念。高考,就是拿分,不管你会不会,拿到分,就是本事。会的题目一定要拿满分,不会的题目,就要蒙分,抢分。明白我的意思了吧?
解答题的前三题,数学想要上120的同学,这三题一定要几乎拿满分。而后面三题,也许就不是我们所能控制得了。但是,想上130的同学,在这三题里,也要保证能拿到25分。
这三题一般是解析几何,以及函数导数综合应用。
先讲解析几何,这个题型是我最头疼的。计算量大,运算复杂,有的题目非常难想到方法。在这里我就以此为例,教你们如何应对自己无法克服的弱项。
当时我为自己定下的目标,数学就是130,我数学基础不好,再往高我可能就很难做到了。这个目标实际,但离当时的90几也有距离。
我把130拆分开来,综合自己的能力,得到下面的计划:选择+填空满分不能错;前三道大题不能扣分;而压轴题我大概只能拿到6分,也就是扣8分;倒数第二题能做两问,扣4分。
而算到解析几何,一般是两问,就算我不做第二问,也不会影响130。
为什么要这么大方放弃解析几何第二问的7分呢?我前面说过了,这是应对不可克服障碍的方法。
当时我没少练过解析几何,但是练得再多,我发现到了考试的时候,我还是没有办法在15分钟内做完整道题。而解析几何第一问一般简单,3分钟就可以做完,但第二问浪费了我太多时间,还不一定做对。
所以我以后联系解析几何的时候,全部不练第二问。考试时,若是第二问不是简单的吐血,我都不会去做它,免得浪费时间。
这就是我的另一个方法,确定不可克服的弱点,放弃它。
我说的放弃,是绝对要有针对性的放弃。比如我的目标是130,我就可以在保证其他题目会的情况下,固定的放弃2小题,平时就不练习确定放弃的题型了。
这样做是为了提高时间和提分的比率。毕竟时间有限,要把时间放在提升快的部分。
下面讲讲重头戏——函数、数列、导数的综合应用。
这一部分题目往往是难度比较大的,但我不主张大家放弃它。它的特点就是难想,但是一旦想到,解题就比较快。而“想”,却是我们平时可以训练的。
比如一题以数列为主的综合应用题,做多了题目的同学应该都知道,往往第一问就是求通项公式,这是数列题中最典型的一种题型,也是高考热点。就算是压轴题,第一问一定都不难。
而这种通项公式的求法,高考中会考的方法只有几种。
至于哪几种方法,我告诉了你们,你们也不会用。只有自己找出来的规律,才能在解题中运用自如。
那么如何去自己寻找解题方法呢?我就可以在这两天,把手上所有套题中涉及求通向公式的题目全部找出来。只做那一问,其他不做。
也许第一题你不会,好,看答案。之后绝对不是把答案抄上去就可以,而是要一步步的看,去理解。
第一步做了什么,为什么要这样做,第二步又做了什么,为什么这样做...直到整个过程都明白了,再把答案盖上,自己再做一次。
自己都能做出来了,那么你就已经理解这一题了。但是不够,最后你要做的是总结,不依赖这道题,用文字把你整个解题的思维写下来,比如第一步干什么,第二步干什么。
比如当时我总结的一条:
在题目出现一个双数列项关系等式的时候,求通向公式的方法就是
1、求出一个较明显通向公式(一般是等差或者等比数列),2、把第一个求出来的数列项合并到一边,3、把1中的通向公式带入等式,求得第二条通向公式。 当然我这个只是一个示例,不一定对,但是要你们能够把经典题型总结成这种文字的普遍规律。下一次再遇到这种题型,把规律往里面套,就可以了。
这种总结方法不仅适用于数学,而且在化学大题更广泛的适用,在讲到化学的时候我也会再次提到它。
有不少同学问,什么时候该作总结。这这里就做出回答了,当你发现一种新的题型的时候。
当然很多同学会觉得这样做题非常浪费时间。没错,当时我试过一题做了一整个晚修。而我之所以让你们做套题,就是要你们有对高考题型的敏感度,知道哪种题型有可能考,哪种不会考。
这种总结方法,一定要有针对性,就是要用在高考常考的题型上。尤其是三角函数,概率问题,立体几何,解析几何中的求解析式,数列问题中求通向公式以及求和,这几种高考次次必考又搞不出新意的题型,屡试不爽。
但是你要说那些综合性强,难度大,又没见过重样的压轴题最后一问。我告诉你,我也没办法,这种题目我平时也不会练。花一晚上时间搞懂一个难题,好有成就感啊,但是有什么用呢,你又撞不上原题。
加油吧! |