壹牛家长圈-

查看: 1228|回复: 10
打印 上一主题 下一主题

初二数学不掌握这几点,将拖累整个初三,必须改正!

  [复制链接]
跳转到指定楼层
楼主
发表于 2018-1-15 14:42:28 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

相聚壹牛,和更多牛爸牛妈们一起交流!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 毛毛虫 于 2018-1-15 15:09 编辑

初二数学不掌握这几点,将拖累整个初三,必须改正!


很多基础差的同学问,我从小数学就不好,现在初二成绩还是一塌糊涂,我还有救吗?但毛毛虫想说,在学习初二数学的同时,把以前的知识好好补一补,成绩一样可以赶上去。今天,给大家带来初二的几何知识,希望同学们能好好看看,初三的同学也可以有时间复习一下!几何可以说占了初中数学的半壁江山,囊括了无数的重点知识、难点知识、无数的中考考点…几何知识主要集中在初二学习,如果初二不学好几何,将会拖累整个初三!!在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松有快速!辅助线画不对,可能就是解题绕弯又出错!如何快速、添加利于解题的辅助线??诀窍都在下面了!

01
几何常见辅助线口诀
三角形:

图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。

四边形:

平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。

圆:

半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径联。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。


02
由角平分线想到的辅助线
(1)截取构全等
已知,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自已试一试。

(2)角分线上点向两边作垂线构全等



如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180
分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。
(3)三线合一构造等腰三角形
已知,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。
分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。
(4)角平分线+平行线



如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。
分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。

03
由线段和差想到的辅助线

截长补短法



AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。
分析:过C点作AD垂线,得到全等即可。

04
由中点想到的辅助线
(1)中线把三角形面积等分
已知,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。
分析:利用中线分等底和同高得面积关系。

(2)中点联中点得中位线
已知,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。
分析:联BD取中点联接联接,通过中位线得平行传递角度。

(3)倍长中线
已知,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。
分析:倍长中线得到全等易得。
(4)RtΔ斜边中线
已知,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。
分析:取AB中点得RTΔ斜边中线得到等量关系。

05
由全等三角形想到的辅助线
(1)倍长过中点得线段
已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是。
分析:利用倍长中线做。
(2)截长补短



如图,在四边形ABCD中,BC>BA,AD=CD,BD平分 ,求证:∠A+∠C=180
分析:在角上截取相同的线段得到全等。

(3)平移变换



如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE
分析:将△ACE平移使EC与BD重合。

(4)旋转



正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数
分析:将△ADF旋转使AD与AB重合。全等得证。

06
由梯形想到的辅助线
(1)平移一腰
已知,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17. 求CD的长。
分析:利用平移一腰把梯形分割成三角形和平行四边形。

(2)平移两腰
已知,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。
分析:利用平移两腰把梯形底角放在一个三角形内。
(3)平移对角线



已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积。
分析:通过平移梯形一对角线构造直角三角形求解。

(4)作双高
已知在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
分析:作梯形双高利用勾股定理和三角形边边边的关系可得。
(5)作中位线
已知,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:EF//AD
分析:联DF并延长,利用全等即得中位线。
②在梯形ABCD中,AD∥BC, ∠BAD=90°,E是DC上的中点,连接AE和BE,求∠AEB=2∠CBE。
分析:在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。


成都中考2016-2017年各区最新诊断考试真题试卷汇编火爆出售中!
(点击图片进入店铺购买)




本文由毛毛虫整理自网络(来源:网络),分享于此,希望对大家有所帮助!欢迎大家回帖,和众多的牛爸牛妈一起交流讨论!作者和壹牛家长论坛拥有最终版权转载注明出处如有违权,请联系我们删除!
【壹牛】2018高考家长群 446132602(限2018年高考生家长加入)
【壹牛】2019高考家长群 156704153(限2019年高考生家长加入)
【壹牛】2020 高考家长2群 161108752(限2020年高考生家长加入)
【壹牛】2020 高考家长1群 255408023(限2020年高考生家长加入)
【壹牛】2018 中考家长群 619911050(限2018年中考学生家长加入)
【壹牛】2019 中考家长群 333035273(限2019年中考学生家长加入)
【壹牛】2020 中考家长群 602378231(限2020年中考学生家长加入)
【壹牛】18小升初家长群 337231456(限2018年小升初学生家长加入)
【壹牛】小学家长群 122284038(限5年级及以下学生家长加入)
【壹牛】留学自助交流群 606486338(限关注国际高中、出国留学的学生家长加入)


更多的资源共享和互助成长,敬请大家关注壹牛微信公众号:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 支持支持1 反对反对
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复

使用道具 举报

板凳
发表于 2018-1-15 19:28:06 | 只看该作者
谢谢楼主分享!学习了
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

地板
发表于 2018-1-16 10:22:57 | 只看该作者
学习了,谢谢分享。
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

5#
发表于 2018-1-16 11:26:35 | 只看该作者
多谢楼主分享!
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

6#
发表于 2018-1-17 09:50:28 | 只看该作者
学习了,谢谢分享。
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

7#
发表于 2018-1-17 10:19:51 来自手机 | 只看该作者
谢谢楼主分享,学习了
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

8#
发表于 2018-1-22 11:47:51 | 只看该作者
资源共享和互助成长,敬请大家关注壹牛微信公众号
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

10#
发表于 2018-1-22 19:20:49 来自手机 | 只看该作者
真好啊,谢谢
更多的资源共享和互助成长,敬请大家关注壹牛微信公众号: “壹牛升学资源圈”和“壹牛家长圈”。搜索微信公众号“sxquaner”和“www-16jzq-com”添加关注!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

让社区更精彩

  • 办公地址:成都青羊区通惠门路3号锦都1期18楼3号(浦发银行楼上)【地铁2号线通惠门站D出口、地铁4号线宽窄巷子站B出口】
  • 工作时间:周一到周六 10:00-17:00
028-86691808

关注我们

反馈建议:985052335@qq.com
Copyright   ©2016-2022  壹牛家长圈www.16jzq.com  Powered by©Discuz!
  ( 蜀ICP备16021970号-1 )|网站地图 
快速回复 返回顶部 返回列表